Copied to
clipboard

G = S3xC22:C4order 96 = 25·3

Direct product of S3 and C22:C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3xC22:C4, D6.10D4, C23.18D6, (C2xC4):5D6, D6:C4:9C2, D6:5(C2xC4), C2.1(S3xD4), C22:4(C4xS3), C6.17(C2xD4), (C22xS3):2C4, (C2xC12):6C22, C6.6(C22xC4), C6.D4:3C2, (S3xC23).1C2, (C2xC6).21C23, (C2xDic3):5C22, (C22xC6).10C22, C22.13(C22xS3), (C22xS3).33C22, (S3xC2xC4):8C2, C2.8(S3xC2xC4), (C2xC6):1(C2xC4), C3:1(C2xC22:C4), (C3xC22:C4):8C2, SmallGroup(96,87)

Series: Derived Chief Lower central Upper central

C1C6 — S3xC22:C4
C1C3C6C2xC6C22xS3S3xC23 — S3xC22:C4
C3C6 — S3xC22:C4
C1C22C22:C4

Generators and relations for S3xC22:C4
 G = < a,b,c,d,e | a3=b2=c2=d2=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >

Subgroups: 330 in 132 conjugacy classes, 49 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, S3, C6, C6, C6, C2xC4, C2xC4, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22:C4, C22:C4, C22xC4, C24, C4xS3, C2xDic3, C2xC12, C22xS3, C22xS3, C22xS3, C22xC6, C2xC22:C4, D6:C4, C6.D4, C3xC22:C4, S3xC2xC4, S3xC23, S3xC22:C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, C22xS3, C2xC22:C4, S3xC2xC4, S3xD4, S3xC22:C4

Character table of S3xC22:C4

 class 12A2B2C2D2E2F2G2H2I2J2K34A4B4C4D4E4F4G4H6A6B6C6D6E12A12B12C12D
 size 111122333366222226666222444444
ρ1111111111111111111111111111111    trivial
ρ21111111111111-1-1-1-1-1-1-1-111111-1-1-1-1    linear of order 2
ρ3111111-1-1-1-1-1-111111-1-1-1-1111111111    linear of order 2
ρ4111111-1-1-1-1-1-11-1-1-1-1111111111-1-1-1-1    linear of order 2
ρ51111-1-11111-1-11-1-111-11-11111-1-111-1-1    linear of order 2
ρ61111-1-11111-1-1111-1-11-11-1111-1-1-1-111    linear of order 2
ρ71111-1-1-1-1-1-1111-1-1111-11-1111-1-111-1-1    linear of order 2
ρ81111-1-1-1-1-1-111111-1-1-11-11111-1-1-1-111    linear of order 2
ρ911-1-1-111-1-111-11-ii-ii-i-iii-1-11-11i-ii-i    linear of order 4
ρ1011-1-1-111-1-111-11i-ii-iii-i-i-1-11-11-ii-ii    linear of order 4
ρ1111-1-1-11-111-1-111-ii-iiii-i-i-1-11-11i-ii-i    linear of order 4
ρ1211-1-1-11-111-1-111i-ii-i-i-iii-1-11-11-ii-ii    linear of order 4
ρ1311-1-11-11-1-11-111i-i-iii-i-ii-1-111-1i-i-ii    linear of order 4
ρ1411-1-11-11-1-11-111-iii-i-iii-i-1-111-1-iii-i    linear of order 4
ρ1511-1-11-1-111-11-11i-i-ii-iii-i-1-111-1i-i-ii    linear of order 4
ρ1611-1-11-1-111-11-11-iii-ii-i-ii-1-111-1-iii-i    linear of order 4
ρ17222222000000-1-2-2-2-20000-1-1-1-1-11111    orthogonal lifted from D6
ρ182222-2-2000000-122-2-20000-1-1-11111-1-1    orthogonal lifted from D6
ρ192-2-2200-2-222002000000002-2-2000000    orthogonal lifted from D4
ρ202-22-200-22-2200200000000-22-2000000    orthogonal lifted from D4
ρ212-22-2002-22-200200000000-22-2000000    orthogonal lifted from D4
ρ22222222000000-122220000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ232-2-220022-2-2002000000002-2-2000000    orthogonal lifted from D4
ρ242222-2-2000000-1-2-2220000-1-1-111-1-111    orthogonal lifted from D6
ρ2522-2-22-2000000-1-2i2i2i-2i000011-1-11i-i-ii    complex lifted from C4xS3
ρ2622-2-2-22000000-12i-2i2i-2i000011-11-1i-ii-i    complex lifted from C4xS3
ρ2722-2-22-2000000-12i-2i-2i2i000011-1-11-iii-i    complex lifted from C4xS3
ρ2822-2-2-22000000-1-2i2i-2i2i000011-11-1-ii-ii    complex lifted from C4xS3
ρ294-4-4400000000-200000000-222000000    orthogonal lifted from S3xD4
ρ304-44-400000000-2000000002-22000000    orthogonal lifted from S3xD4

Permutation representations of S3xC22:C4
On 24 points - transitive group 24T146
Generators in S24
(1 6 9)(2 7 10)(3 8 11)(4 5 12)(13 22 17)(14 23 18)(15 24 19)(16 21 20)
(5 12)(6 9)(7 10)(8 11)(17 22)(18 23)(19 24)(20 21)
(1 3)(2 13)(4 15)(5 24)(6 8)(7 22)(9 11)(10 17)(12 19)(14 16)(18 20)(21 23)
(1 14)(2 15)(3 16)(4 13)(5 22)(6 23)(7 24)(8 21)(9 18)(10 19)(11 20)(12 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)

G:=sub<Sym(24)| (1,6,9)(2,7,10)(3,8,11)(4,5,12)(13,22,17)(14,23,18)(15,24,19)(16,21,20), (5,12)(6,9)(7,10)(8,11)(17,22)(18,23)(19,24)(20,21), (1,3)(2,13)(4,15)(5,24)(6,8)(7,22)(9,11)(10,17)(12,19)(14,16)(18,20)(21,23), (1,14)(2,15)(3,16)(4,13)(5,22)(6,23)(7,24)(8,21)(9,18)(10,19)(11,20)(12,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;

G:=Group( (1,6,9)(2,7,10)(3,8,11)(4,5,12)(13,22,17)(14,23,18)(15,24,19)(16,21,20), (5,12)(6,9)(7,10)(8,11)(17,22)(18,23)(19,24)(20,21), (1,3)(2,13)(4,15)(5,24)(6,8)(7,22)(9,11)(10,17)(12,19)(14,16)(18,20)(21,23), (1,14)(2,15)(3,16)(4,13)(5,22)(6,23)(7,24)(8,21)(9,18)(10,19)(11,20)(12,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );

G=PermutationGroup([[(1,6,9),(2,7,10),(3,8,11),(4,5,12),(13,22,17),(14,23,18),(15,24,19),(16,21,20)], [(5,12),(6,9),(7,10),(8,11),(17,22),(18,23),(19,24),(20,21)], [(1,3),(2,13),(4,15),(5,24),(6,8),(7,22),(9,11),(10,17),(12,19),(14,16),(18,20),(21,23)], [(1,14),(2,15),(3,16),(4,13),(5,22),(6,23),(7,24),(8,21),(9,18),(10,19),(11,20),(12,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])

G:=TransitiveGroup(24,146);

S3xC22:C4 is a maximal subgroup of
C24.35D6  C24.38D6  C42:9D6  C42:12D6  C4xS3xD4  C42:13D6  D12:23D4  C42:18D6  C24:7D6  C24.44D6  C6.402+ 1+4  D12:20D4  C6.422+ 1+4  D12:21D4  C6.512+ 1+4  C6.532+ 1+4  C6.1202+ 1+4  C6.1212+ 1+4  C6.612+ 1+4  C6.1222+ 1+4  C6.622+ 1+4  D12:10D4  C42:22D6  C42:23D6  C42:25D6  C42:26D6  C62.91C23  C62.116C23  D30.27D4  D30.45D4
S3xC22:C4 is a maximal quotient of
(C2xC12):Q8  C22.58(S3xD4)  (C2xC4):9D12  D6:C42  D6:(C4:C4)  D6:M4(2)  D6:C8:C2  C23:C4:5S3  M4(2).19D6  M4(2).21D6  C4:C4:19D6  D4:(C4xS3)  D4:2S3:C4  (S3xQ8):C4  Q8:7(C4xS3)  C4:C4.150D6  C42:3D6  C24.55D6  C24.59D6  C24.23D6  C24.24D6  C62.91C23  C62.116C23  D30.27D4  D30.45D4

Matrix representation of S3xC22:C4 in GL4(F13) generated by

121200
1000
0010
0001
,
1000
121200
00120
00012
,
12000
01200
00120
00121
,
1000
0100
00120
00012
,
5000
0500
00111
00112
G:=sub<GL(4,GF(13))| [12,1,0,0,12,0,0,0,0,0,1,0,0,0,0,1],[1,12,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,12,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[5,0,0,0,0,5,0,0,0,0,1,1,0,0,11,12] >;

S3xC22:C4 in GAP, Magma, Sage, TeX

S_3\times C_2^2\rtimes C_4
% in TeX

G:=Group("S3xC2^2:C4");
// GroupNames label

G:=SmallGroup(96,87);
// by ID

G=gap.SmallGroup(96,87);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,188,50,2309]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^2=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

Export

Character table of S3xC22:C4 in TeX

׿
x
:
Z
F
o
wr
Q
<