direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3xC22:C4, D6.10D4, C23.18D6, (C2xC4):5D6, D6:C4:9C2, D6:5(C2xC4), C2.1(S3xD4), C22:4(C4xS3), C6.17(C2xD4), (C22xS3):2C4, (C2xC12):6C22, C6.6(C22xC4), C6.D4:3C2, (S3xC23).1C2, (C2xC6).21C23, (C2xDic3):5C22, (C22xC6).10C22, C22.13(C22xS3), (C22xS3).33C22, (S3xC2xC4):8C2, C2.8(S3xC2xC4), (C2xC6):1(C2xC4), C3:1(C2xC22:C4), (C3xC22:C4):8C2, SmallGroup(96,87)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3xC22:C4
G = < a,b,c,d,e | a3=b2=c2=d2=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >
Subgroups: 330 in 132 conjugacy classes, 49 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, S3, C6, C6, C6, C2xC4, C2xC4, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22:C4, C22:C4, C22xC4, C24, C4xS3, C2xDic3, C2xC12, C22xS3, C22xS3, C22xS3, C22xC6, C2xC22:C4, D6:C4, C6.D4, C3xC22:C4, S3xC2xC4, S3xC23, S3xC22:C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, C4xS3, C22xS3, C2xC22:C4, S3xC2xC4, S3xD4, S3xC22:C4
Character table of S3xC22:C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | i | -i | i | -i | -i | i | i | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -i | i | -i | i | i | -i | -i | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | i | i | -i | -i | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -i | -i | i | i | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -i | i | i | -i | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -i | i | i | -i | i | -i | -i | i | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ22 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ24 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ25 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | complex lifted from C4xS3 |
ρ26 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | i | -i | i | -i | complex lifted from C4xS3 |
ρ27 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | complex lifted from C4xS3 |
ρ28 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | -i | i | -i | i | complex lifted from C4xS3 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ30 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
(1 6 9)(2 7 10)(3 8 11)(4 5 12)(13 22 17)(14 23 18)(15 24 19)(16 21 20)
(5 12)(6 9)(7 10)(8 11)(17 22)(18 23)(19 24)(20 21)
(1 3)(2 13)(4 15)(5 24)(6 8)(7 22)(9 11)(10 17)(12 19)(14 16)(18 20)(21 23)
(1 14)(2 15)(3 16)(4 13)(5 22)(6 23)(7 24)(8 21)(9 18)(10 19)(11 20)(12 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,6,9)(2,7,10)(3,8,11)(4,5,12)(13,22,17)(14,23,18)(15,24,19)(16,21,20), (5,12)(6,9)(7,10)(8,11)(17,22)(18,23)(19,24)(20,21), (1,3)(2,13)(4,15)(5,24)(6,8)(7,22)(9,11)(10,17)(12,19)(14,16)(18,20)(21,23), (1,14)(2,15)(3,16)(4,13)(5,22)(6,23)(7,24)(8,21)(9,18)(10,19)(11,20)(12,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,6,9)(2,7,10)(3,8,11)(4,5,12)(13,22,17)(14,23,18)(15,24,19)(16,21,20), (5,12)(6,9)(7,10)(8,11)(17,22)(18,23)(19,24)(20,21), (1,3)(2,13)(4,15)(5,24)(6,8)(7,22)(9,11)(10,17)(12,19)(14,16)(18,20)(21,23), (1,14)(2,15)(3,16)(4,13)(5,22)(6,23)(7,24)(8,21)(9,18)(10,19)(11,20)(12,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,6,9),(2,7,10),(3,8,11),(4,5,12),(13,22,17),(14,23,18),(15,24,19),(16,21,20)], [(5,12),(6,9),(7,10),(8,11),(17,22),(18,23),(19,24),(20,21)], [(1,3),(2,13),(4,15),(5,24),(6,8),(7,22),(9,11),(10,17),(12,19),(14,16),(18,20),(21,23)], [(1,14),(2,15),(3,16),(4,13),(5,22),(6,23),(7,24),(8,21),(9,18),(10,19),(11,20),(12,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,146);
S3xC22:C4 is a maximal subgroup of
C24.35D6 C24.38D6 C42:9D6 C42:12D6 C4xS3xD4 C42:13D6 D12:23D4 C42:18D6 C24:7D6 C24.44D6 C6.402+ 1+4 D12:20D4 C6.422+ 1+4 D12:21D4 C6.512+ 1+4 C6.532+ 1+4 C6.1202+ 1+4 C6.1212+ 1+4 C6.612+ 1+4 C6.1222+ 1+4 C6.622+ 1+4 D12:10D4 C42:22D6 C42:23D6 C42:25D6 C42:26D6 C62.91C23 C62.116C23 D30.27D4 D30.45D4
S3xC22:C4 is a maximal quotient of
(C2xC12):Q8 C22.58(S3xD4) (C2xC4):9D12 D6:C42 D6:(C4:C4) D6:M4(2) D6:C8:C2 C23:C4:5S3 M4(2).19D6 M4(2).21D6 C4:C4:19D6 D4:(C4xS3) D4:2S3:C4 (S3xQ8):C4 Q8:7(C4xS3) C4:C4.150D6 C42:3D6 C24.55D6 C24.59D6 C24.23D6 C24.24D6 C62.91C23 C62.116C23 D30.27D4 D30.45D4
Matrix representation of S3xC22:C4 ►in GL4(F13) generated by
12 | 12 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 12 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
5 | 0 | 0 | 0 |
0 | 5 | 0 | 0 |
0 | 0 | 1 | 11 |
0 | 0 | 1 | 12 |
G:=sub<GL(4,GF(13))| [12,1,0,0,12,0,0,0,0,0,1,0,0,0,0,1],[1,12,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,12,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[5,0,0,0,0,5,0,0,0,0,1,1,0,0,11,12] >;
S3xC22:C4 in GAP, Magma, Sage, TeX
S_3\times C_2^2\rtimes C_4
% in TeX
G:=Group("S3xC2^2:C4");
// GroupNames label
G:=SmallGroup(96,87);
// by ID
G=gap.SmallGroup(96,87);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,188,50,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^2=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations
Export